Add like
Add dislike
Add to saved papers

Exciton-coupled charge-transfer dynamics in a porphyrin J-aggregate/TiO(2) complex.

Exciton-coupled charge-transfer (CT) dynamics in TiO(2) nanoparticles (NP) sensitized with porphyrin J-aggregates has been studied by femtosecond time-resolved transient absorption spectroscopy. J-aggregates of 5,10,15-triphenyl-20-(3,4-dihydroxyphenyl) porphyrin (TPPcat) form CT complexes on TiO(2) NP surfaces. Catechol-mediated strong CT coupling between J-aggregate and TiO(2) NP facilitates interfacial exciton dissociation for electron injection into the conduction band of the TiO(2) nanoparticle in pulse width limited time (<80 fs). Here, the electron-transfer (<80 fs) process dominates over the intrinsic exciton-relaxation process (J-aggregates: ca. 200 fs) on account of exciton-coupled CT interaction. The parent hole on J-aggregates is delocalized through J-aggregate excitonic coherence. As a result, holes immobilized on J-aggregates are spatially less accessible to electrons injected into TiO(2) , and thus the back electron transfer (BET) process is slower than that of the monomer/TiO(2) system. The J-aggregate/porphyrin system shows exciton spectral and temporal properties for better charge separation in strongly coupled composite systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app