JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Central mechanism underlying pressor and bradycardic effect of intracerebroventricularly injected arachidonic acid.

The aim of the current study was to determine the central cyclooxygenase (COX) pathway and central thromboxane signaling in the cardiovascular effects evoked by arachidonic acid (AA). As a main control for the study, different doses of AA (75, 150, or 300 µg) were administered intracerebroventricularly (i.c.v.). Centrally injected AA dose- and time-dependently increased mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. The maximal cardiovascular effects of AA were observed at min 10 of the injection and lasted almost 30 min. To investigate the central mechanism of the AA-induced cardiovascular effect in conscious normotensive animals, pretreatment with nonselective COX inhibitor indomethacin (200 µg; i.c.v.), thromboxane A2 (TXA2) synthesis inhibitor furegrelate (250 or 500 µg; i.c.v.), or TXA2 receptor antagonist SQ-29548 (8 or 16 µg; i.c.v.) was carried out 15 min before AA (150 µg; i.c.v.) injection. While indomethacin completely prevented the pressor and bradycardic responses to AA, furegrelate and SQ-29548 attenuated these effects in part in awake normotensive rats. In conclusion, these findings suggest that the pressor and bradycardic cardiovascular effects of centrally injected AA are dependent on COX activity being totally central and the TXA2 signaling pathway being subsequently central, at least in part.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app