Add like
Add dislike
Add to saved papers

Antibody to granulocyte macrophage colony-stimulating factor reduces the number of activated tissue macrophages and improves left ventricular function after myocardial infarction in a rat coronary artery ligation model.

Granulocyte macrophage colony-stimulating factor (GM-CSF) promotes infarct expansion and inappropriate collagen synthesis in a myocardial infarction (MI). This study was designed to determine if treatment with anti-GM-CSF will inhibit macrophage migration, preserve function, and limit left ventricular (LV) remodeling in the rat coronary artery ligation model. Treatment with a monoclonal antibody to GM-CSF (5 mg/kg) was initiated 24 hours before coronary artery ligation and continued every 3 days for 3 weeks. Left coronary arteries of rats were ligated, animals were recovered, and cardiac function was evaluated 3 weeks postligation. Tissue samples were processed for histochemistry. Anti-GM-CSF treatment increased LV ejection fraction (37 ± 3% vs 47 ± 5%) and decreased LV end systolic diameter (0.75 ± 0.12 vs 0.59 ± 0.05 cm) with no changes in LV systolic pressure (109 ± 4 vs 104 ± 5 mm Hg), LV end diastolic pressure (22 ± 4 vs 21 ± 2 mm Hg), LV end diastolic diameter (0.96 ± 0.04 vs 0.92 ± 0.05 cm), or the time constant of LV relaxation tau (25.4 ± +2.4 vs 22.7 ± 1.4 milliseconds) (P < 0.05). Significantly lower numbers of tissue macrophages and significant reductions in infarct size were found in the myocardium of antibody-treated animals (81 ± 21.24 vs 195 ± 31.7 positive cells per 0.105 mm, compared with controls. These findings suggest that inhibition of macrophage migration may be beneficial in the treatment of heart failure after MI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app