Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana.

Gene 2011 May 2
The mitochondrial genome of the raphid pennate diatom Phaeodactylum tricornutum has several novel features compared with the mitochondrial genomes of the centric diatom Thalassiosira pseudonana and the araphid pennate diatom Synedra acus. It is almost double the size (77,356 bp) due to a 35,454 bp sequence block consisting of an elaborate combination of direct repeats, making it the largest stramenopile (heterokont) mitochondrial genome known. In addition, the cox1 gene has a +1 translational frameshift involving Pro codons CCC and CCT, the first translational frameshift to be detected in an algal mitochondrial genome. The nad9 and rps14 genes are fused by the insertion of an in-frame sequence and cotranscribed. The nad11 gene is split into two parts corresponding to the FeS and molybdate-binding domains, but both parts are still on the mitochondrial genome, in contrast to the brown algae where the second domain appears to have been transferred to the nucleus. In contrast to P. tricornutum, the repeat region of T. pseudonana consists of a much smaller 4790 bp string of almost identical double-hairpin elements, evidence of slipped-strand mispairing and active gene conversion. The diatom mitochondrial genomes have undergone considerable gene rearrangement since the three lineages of diatoms diverged, but all three have kept their repeat regions segregated from their relatively compact coding regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app