JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult.

Blood-brain barrier (BBB) leakage plays a key role in cerebral ischemia-reperfusion injury. It is quite necessary to further explore the characteristic and mechanism of BBB leakage during stroke. We induced a focal cerebral ischemia model by transient middle cerebral artery occlusion in male rats for defining the time course of BBB permeability within 120 h following reperfusion and evaluate the specific role of tight junction (TJ) associated proteins claudin-5, occludin, and ZO-1 as well as protein kinase C delta (PKCδ) pathway in BBB leakage induced by reperfusion injury. We verified a bimodal increase in the permeability of the BBB following focal ischemia by Evans blue assay. Two peaks of BBB permeability appeared at 3 h and 72 h of reperfusion after 2 h focal ischemia, respectively. The leak at the endothelial cell was represented at the level of transmission electron microscopy. TTC staining results showed increased infarct size with time after cerebral ischemia reperfusion. The mRNA and protein expression levels of these three TJ associated proteins were significantly decreased compared with the sham-operated group within 120 h of reperfusion, corresponding to the time-dependent change of the biphasic pattern in BBB leakage. The redistribution of claudin-5, occludin, and ZO-1 in ischemia brain microvascular endothelial cells was observed at the same time points. In addition, Western blot assay revealed PKCδ level was also significantly increased in a similar biphasic pattern to above results within 120 h after cerebral ischemia-reperfusion. This study demonstrates the timing of TJ associated proteins claudin-5, occludin, and ZO-1 in light of BBB permeability associated with cerebral ischemia reperfusion, and suggests PKCδ pathway may participate in TJ barrier open and BBB leakage during reperfusion injury in a time-dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app