Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Versatile site-specific conjugation of small molecules to siRNA using click chemistry.

We have previously demonstrated that conjugation of small molecule ligands to small interfering RNAs (siRNAs) and anti-microRNAs results in functional siRNAs and antagomirs in vivo. Here we report on the development of an efficient chemical strategy to make oligoribonucleotide-ligand conjugates using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) or click reaction. Three click reaction approaches were evaluated for their feasibility and suitability for high-throughput synthesis: the CuAAC reaction at the monomer level prior to oligonucleotide synthesis, the solution-phase postsynthetic "click conjugation", and the "click conjugation" on an immobilized and completely protected alkyne-oligonucleotide scaffold. Nucleosides bearing 5'-alkyne moieties were used for conjugation to the 5'-end of the oligonucleotide. Previously described 2'- and 3'-O-propargylated nucleosides were prepared to introduce the alkyne moiety to the 3' and 5' termini and to the internal positions of the scaffold. Azido-functionalized ligands bearing lipophilic long chain alkyls, cholesterol, oligoamine, and carbohydrate were utilized to study the effect of physicochemical characteristics of the incoming azide on click conjugation to the alkyne-oligonucleotide scaffold in solution and on immobilized solid support. We found that microwave-assisted click conjugation of azido-functionalized ligands to a fully protected solid-support bound alkyne-oligonucleotide prior to deprotection was the most efficient "click conjugation" strategy for site-specific, high-throughput oligonucleotide conjugate synthesis tested. The siRNA conjugates synthesized using this approach effectively silenced expression of a luciferase gene in a stably transformed HeLa cell line.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app