In vitro activity of beta-lactam antibiotics against CTX-M-producing Escherichia coli

M Tärnberg, A Ostholm-Balkhed, H-J Monstein, A Hällgren, H Hanberger, L E Nilsson
European Journal of Clinical Microbiology & Infectious Diseases 2011, 30 (8): 981-7
Beta-lactam antibiotics have been discussed as options for the treatment of infections caused by multiresistant extended-spectrum beta-lactamase (ESBL)-producing bacteria if the minimum inhibitory concentration (MIC) is low. The objective of this study was to investigate the in vitro activity of different beta-lactam antibiotics against CTX-M-producing Escherichia coli. A total of 198 isolates of E. coli with the ESBL phenotype were studied. Polymerase chain reaction (PCR) amplification of CTX-M genes and amplicon sequencing were performed. The MICs for amoxicillin-clavulanic acid, aztreonam, cefepime, cefotaxime, ceftazidime, ceftibuten, ertapenem, imipenem, mecillinam, meropenem, piperacillin-tazobactam, and temocillin were determined with the Etest. Susceptibility was defined according to the breakpoints of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). MIC(50) and MIC(90) values were calculated. Isolates from CTX-M group 9 showed higher susceptibility to the beta-lactam antibiotics tested than isolates belonging to CTX-M group 1. More than 90% of the isolates belonging to CTX-M group 9 were susceptible to amoxicillin-clavulanic acid, ceftazidime, ceftibuten, piperacillin-tazobactam, and temocillin. The susceptibility was high to mecillinam, being 91%, regardless of the CTX-M group. All isolates were susceptible to imipenem and meropenem, and 99% to ertapenem. This study shows significant differences in susceptibility to different beta-lactam antibiotics among the CTX-M-producing E. coli isolates and a significant difference for many antibiotics tested between the CTX-M-producing groups 1 and 9. The good in vitro activity of other beta-lactam antibiotics compared to carbapenems indicate that clinical studies are warranted in order to examine the potential role of these beta-lactam antibiotics in the treatment of infections caused by multiresistant ESBL-producing E. coli.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"