Add like
Add dislike
Add to saved papers

Brominated flame retardants in seawater and atmosphere of the Atlantic and the Southern Ocean.

Seawater and air samples were collected aboard the FS Polarstern during the cruises ANT-XXV/1 + 2 in the Atlantic and Southern Ocean in 2008. The particulate and dissolved phase in water and particulate and gaseous phase in air were analyzed separately for nine polybrominated diphenyl ethers (PBDEs) and six non-PBDE brominated flame retardants (BFRs). Air concentrations of 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) and hexabromobenzene (HBB) in the gaseous and particulate phase (median = 0.56 pg m(-3) for DPTE and 0.92 pg m(-3) for HBB) were comparable to ∑(9)PBDEs (1.0 pg m(-3)). Pentabromotoluene (PBT) was detectable in ∼30% of the gaseous phase samples, whereas concentration of 2,4,6-tribromophenyl allylether (ATE), hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) and 2-ethyl-1-hexyl 2,3,4,5-tetrabromobenzoate (EHTBB) were below their method detection limits. DPTE, and PBDEs were also found in seawater at low pg per liter levels. Elevated seawater concentrations of PBDEs and DPTE were measured in the English Channel and close to South African coast. Concentrations of DPTE, BDE-47, and BDE-99 in the atmosphere generally decreased from Europe toward the Southern Ocean, whereas no latitudinal trend was observed in seawater. Air-water exchange gradients suggested net deposition dominates for all selected substances. The medians of net deposition fluxes for the air-water gas exchange were 83, 21, 69, 20, and 781 pg m(-2) day(-1) for BDE-47, BDE-100, BDE-99, DPTE, and HBB, whereas medians of dry deposition fluxes were 2.0, 0.3, 1.2, 1.0, and 0.5 pg m(-2) day(-1) for BDE-47, BDE-100, BDE-99, DPTE, and HBB. Overall, these results highlight the important role of the long-range atmospheric transport of PBDE and non-PBDE BFRs to remote regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app