JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Polymer-binding peptides for the noncovalent modification of polymer surfaces: effects of peptide density on the subsequent immobilization of functional proteins.

Peptides that specifically bind to polyetherimide (PEI) were selected, characterized, and used for the noncovalent modification of the PEI surface. The peptides were successfully identified from a phage-displayed peptide library. A chemically-synthesized peptide composed of the Thr-Gly-Ala-Asp-Leu-Asn-Thr sequence showed an extremely high binding constant for the PEI films (5.6 × 10(8) M(-1)), which was more than three orders of magnitude greater than that for the reference polystyrene films. The peptide was biotinylated and immobilized onto the PEI films to further immobilize streptavidin (SAv). The amount of SAv bound depended on the density of immobilized peptide. It gradually increased with an increasing density of immobilized peptide and achieved a maximum (2.1 pmol cm(-2)) at a peptide density of 19.8 pmol cm(-2). The ratio of peptide used for immobilizing SAv at the maximum value was only 11%, and was partially due to the low accessibility of SAv to the biotin moieties on the PEI films. Moreover, the amount of SAv bound gradually decreased at higher peptide densities, suggesting that the clustering of the peptides also inhibited the binding of SAv. Furthermore, peptides on the PEI films promoted the uniform immobilization of SAv with less structural denaturing. The immobilized SAv was able to further immobilize probe DNA to hybridize with its complementary DNA. These present results suggest that the density of immobilized peptide has a great impact on the surface modifications using polymer-binding peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app