JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity.

GDP-mannose pyrophosphorylase (GMPase: EC 2.7.7.22) plays a crucial role in the synthesis of L-ascorbate (AsA) and the consequent detoxification of reactive oxygen species (ROS). Herein, a GMPase (accession ID DQ449030) was identified and cloned from tomato. The full-length cDNA sequence of this gene contains 1,498 bp nucleotides encoding a putative protein with 361 amino acid residues of approximate molecular weight 43 kDa. Northern blot analysis revealed that the GMPase was expressed in all examined tomato tissues, but its expression level was up-regulated in tomato plants subjected to abnormal temperatures. We then overexpressed this tomato GMPase in tobacco plants and observed that the activity of GMPase and the content of AsA were significantly increased by two- to fourfold in the leaves of transgenic tobacco plants. The effect of this gene overexpression was superimposed by the treatments of high or low temperature in tobacco, since the activities of both chloroplastic SOD (superoxide dismutase EC 1.15.1.1), APX (ascorbate peroxidase EC 1.11.1.7) and the content of AsA in leaves were significantly higher in transgenic plants than those of WT, while the contents of H(2)O(2) and O(2)(-·) were reduced. Meanwhile, relative electric conductivity increased less in transgenic plants than that in WT, and the net photosynthetic rate (P(n)) and the maximal photochemical efficiency of PSII (F(v)/F(m)) of transgenic plants were notably higher than those of WT under temperature stresses. In conclusion, the overexpression of GMPase increased the content of AsA, thereby leading to the increase in tolerance to temperature stress in transgenic plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app