JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation.

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochondrial outer membrane protein that promotes mitochondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg-R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP-sensitive potassium channel (mK(ATP)) inhibitor 5-hydroxydecanoate. Conversely, in controls and wild-type human MFN2 mice, the mK(ATP) activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mK(ATP), were reinforced in Tg-R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mK(ATP), which could participate in the pathophysiology of the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app