JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Accumulation of histone deacetylase 6, an aggresome-related protein, is specific to Lewy bodies and glial cytoplasmic inclusions.

Histone deacetylase 6 (HDAC6) plays a crucial role in aggresome formation, resulting in the clearance of misfolded proteins. Previous studies have shown that HDAC6 is concentrated in Lewy bodies (LBs) in Parkinson's disease (PD) and dementia with LBs (DLB) (Cell 115: 727-738, 2003). We performed immunohistochemical and ultrastructural investigations on the brains of patients with various neurodegenerative disorders. Anti-HDAC6 antibody faintly immunostained the cytoplasm of neuronal and glial cells in control subjects. In PD and DLB, almost all of the cortical, brainstem-type and peripheral LBs were intensely immunolabeled with anti-HDAC6. In multiple system atrophy (MSA), the vast majority of glial cytoplasmic inclusions (GCIs) were also positive for HDAC6. Immunoelectron microscopy revealed that the reaction product was localized to the filamentous structures in LBs and GCIs. Various neuronal and glial inclusions in neurodegenerative disorders other than LB disease and MSA were HDAC6-negative. These findings suggest that accumulation of HDAC6 is specific to α-synucleinopathy and that both LBs and GCIs may represent cytoprotective responses to sequester toxic proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app