COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cinnamophilin offers prolonged neuroprotection against gray and white matter damage and improves functional and electrophysiological outcomes after transient focal cerebral ischemia.

OBJECTIVE: We have previously shown that cinnamophilin ([8R, 8'S]-4, 4'-dihydroxy-3, 3'-dimethoxy-7-oxo-8, 8'-neolignan) exhibited potent antioxidant, radical-scavenging, and anti-inflammatory actions and reduced acute ischemic brain damage, even when it was given up to 6 hrs postinsult. Here, we characterized the long-lasting neuroprotection of cinnamophilin against gray and white matter damage and its beneficial effects on electrophysiological and functional outcomes in a model of stroke.

DESIGN: Prospective laboratory animal study.

SETTING: Research laboratory in a university teaching hospital.

SUBJECTS: Adult male Sprague-Dawley rats (240-290 g).

INTERVENTIONS: Under controlled conditions of normoxia, normocarbia, and normothermia, spontaneously breathing, halothane-anesthetized (1.0-1.5%) rats were subjected to transient middle cerebral artery occlusion for 90 mins. Cinnamophilin (80 mg/kg) or vehicle was given intravenously at reperfusion onset.

MEASUREMENTS AND MAIN RESULTS: Physiological parameters, including arterial blood gases and cortical blood perfusion, somatosensory-evoked potentials, and neurobehavioral outcomes, were serially examined. Animals were euthanized at 7 days or 21 days postinsult. Gray matter and white matter (axonal and myelin) damage were then evaluated by quantitative histopathology and immunohistochemistry against phosphorylated component-H neurofilaments and myelin basic protein, respectively. After the follow-up period of 7 and 21 days, our results showed that cinnamophilin significantly decreased gray matter damage by 31.6% and 34.9% (p < .05, respectively) without notable adverse effects. Additionally, cinnamophilin effectively reduced axonal and myelin damage by 46.3-68.6% (p < .05) and 25.2-28.1% (p < .05), respectively. Furthermore, cinnamophilin not only improved the ipsilateral field potentials (p < .05, respectively), but also reduced the severity of contralateral electrophysiological diaschisis (p < .05). Consequently, cinnamophilin improved sensorimotor outcomes up to 21 days postinsult (p < .05, respectively).

CONCLUSIONS: Administration with cinnamophilin provides long-lasting neuroprotection against gray and white matter damage and improves functional and electrophysiological outcomes after ischemic stroke. The results suggest a need for further studies to characterize the potential of cinnamophilin in the field of ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app