JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of Math1 repression.

Notch signaling is active in many sites, and its diverse activities must require tissue-specific intermediaries, which are largely unknown. In the intestinal epithelium, Notch promotes crypt cell proliferation and inhibits goblet cell differentiation. Pharmacologic studies suggest that the latter effect occurs through the transcription factor Math1/Atoh1, which specifies all intestinal secretory cells. We tested this hypothesis using mouse mutants. Genetic loss of the Notch effector RBP-Jκ alone increases all intestinal secretory lineages, with variation between proximal and distal gut segments. This secretory cell excess observed with RBP-Jκ loss was blocked in the absence of Math1 in RBP-Jκ(Fl/Fl);Math1(Fl/Fl);Villin-Cre((ER-T2)) mice. Loss of both factors also restored progenitor replication, proving that Math1 is epistatic to Notch signaling in both secretory cell differentiation and crypt cell proliferation. Investigating mechanisms downstream of Math1, we found that expression of the known Notch effector protein Hes1 was predictably lost in RBP-Jκ(-/-) mice but surprisingly recovered in RBP-Jκ;Math1 compound conditional mutants. Furthermore, the cell cycle inhibitors p27(Kip1) and p57(Kip2) were selectively overexpressed in duodenal and ileal crypts, respectively, in RBP-Jκ-deficient mice. Regional activation of these products was completely abrogated in the absence of Math1. Thus, all intestinal Notch effects channel through the tissue-restricted factor Math1, which promotes secretory differentiation and cell cycle exit by regionally distinct mechanisms. Our data further suggest that, besides transmitting Notch signals, the transcription factor Hes1 acts downstream of Math1 to regulate expression of cell cycle inhibitors and intestinal crypt cell replication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app