JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Prediction of regulatory interactions in Arabidopsis using gene-expression data and support vector machines.

Identification of regulatory relationships between transcription factors (TFs) and their targets is a central problem in post-genomic biology. In this paper, we apply an approach based on the support vector machine (SVM) and gene-expression data to predict the regulatory interactions in Arabidopsis. A set of 125 experimentally validated TF-target interactions and 750 negative regulatory gene pairs are collected as the training data. Their expression profiles data at 79 experimental conditions are fed to the SVM to perform the prediction. Through the jackknife cross-validation test, we find that the overall prediction accuracy of our approach achieves 88.68%. Our approach could help to widen the understanding of Arabidopsis gene regulatory scheme and may offer a cost-effective alternative to construct the gene regulatory network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app