JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

IL-10-producing regulatory B10 cells inhibit intestinal injury in a mouse model.

B cells mediate multiple functions that influence immune and inflammatory responses. In mice, the addition of dextran sulfate sodium (DSS) to drinking water leads to immediate intestinal injury. Dextran sulfate sodium-induced intestinal injury serves as an experimental animal model for human ulcerative colitis. The contribution of B cells to DSS-induced intestinal injury is unclear. In this study, we show that DSS-induced intestinal injury was more severe in CD19-deficient (CD19(-/-)) mice than in wild-type mice. These inflammatory responses were negatively regulated by a unique IL-10-producing CD1d(hi)CD5(+) regulatory B cell subset (B10 cells) that was absent in CD19(-/-) mice and represented only 1% to 2% of splenic B220(+) cells in wild-type mice. Remarkably, adoptive transfer of these B10 cells from wild-type mice reduced inflammation in CD19(-/-) mice in an IL-10-dependent manner. These results demonstrate that IL-10 production from regulatory B10 cells regulates DSS-induced intestinal injury. These findings may provide new insights and therapeutic approaches for treating ulcerative colitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app