JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

M(3) muscarinic receptor antagonist bencycloquidium bromide attenuates allergic airway inflammation, hyperresponsiveness and remodeling in mice.

M(3) muscarinic receptors are localized on inflammatory cells, airway smooth muscle, and submucosal glands, known to mediate bronchoconstriction, mucus secretion, and airway remodeling. It is hypothesized bencycloquidium bromide (BCQB), a novel M(3) receptor antagonist, might have potential effects on airway hyperresponsiveness, inflammation and airway remodeling in a murine model of asthma. Mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was examined to determine the total and differential cell counts, and cytokine levels. Lung tissues were evaluated for cell infiltration, mucus hypersecretion, airway remodeling, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Inhalation administration of BCQB significantly not only reduced ovalbumin-induced airway hyperresponsiveness comparing to methacholine, and prevented the ovalbumin-induced increase in total cell counts and eosinophil counts. Reverse transcriptase polymerase chain reaction analysis of whole lung lysates revealed that BCQB markedly suppressed ovalbumin-induced mRNA expression of eotaxin, IL-5, IL-4 and MMP-9, and increased mRNA expression of IFN-γ and TIMP-1 in a dose-dependent manner. Substantial IFN-γ/IL-4 (Th1/Th2) levels were recovered in bronchoalveolar lavage fluid after BCQB treatment. In addition, histological studies showed that BCQB dramatically inhibited ovalbumin-induced lung tissue eosinophil infiltration, airway mucus production and collagen deposition in lung tissues. Results reported in current paper suggest that M(3) receptors antagonist may provide a novel therapeutic approach to treat airway inflammation, hyperresponsiveness and remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app