JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A biodegradable amphiphilic and cationic triblock copolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy.

Biomaterials 2011 April
One of the key challenges in the development of RNA interference-based cancer therapy is the lack of an efficient delivery system for synthetic small interfering RNAs (siRNAs) that would enable efficient uptake by tumor cells and allow for significant knockdown of a target transcript in vivo. Here, we describe a micelleplex system based on an amphiphilic and cationic triblock copolymer, which can systemically deliver siRNA targeting the acid ceramidase (AC) gene for cancer therapy. This triblock copolymer, consisting of monomethoxy poly(ethylene glycol), poly(ε-caprolactone) and poly(2-aminoethyl ethylene phosphate), self-assembles into micellar nanoparticles (MNPs) in aqueous solution with an average diameter of 60 nm and a zeta potential of approximately 48 mV. The resulting micelleplex, formed by the interaction of MNPs and siRNA, was effectively internalized by BT474 breast cancer cells and siRNA was subsequently released, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in BT474-luciferase cells which stably express luciferase, and suppression of AC expression in BT474 cells at both the transcriptional and protein level, following delivery of specific siRNAs by the micelleplex. Furthermore, a micelleplex carrying siRNA targeting the AC (micelleplex(siAC)) gene was found to induce remarkable apoptosis and reduce the proliferation of cancer cells. Systemic delivery of micelleplex(siAC) significantly inhibited tumor growth in a BT474 xenograft murine model, with depressed expression of AC and no positive activation of the innate immune response, suggesting therapeutic promise for micelleplex siRNA delivery in cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app