Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules.

A Rhodospirillum rubrum gene that is predicted to code for an extracellular poly(3-hydroxybutyrate) (PHB) depolymerase by the recently published polyhydroxyalkanoates (PHA) depolymerase engineering database was cloned. The gene product (PhaZ3( Rru )) was expressed in recombinant E. coli, purified and biochemically characterized. PhaZ3( Rru ) turned out, however, to share characteristics of intracellular PHB depolymerases and revealed a combination of properties that have not yet been described for other PHB depolymerases. A fusion of PhaZ3( Rru )with the enhanced cyan fluorescent protein was able to bind to PHB granules in vivo and supported the function as an intracellular PHB depolymerase. Purified PhaZ3( Rru ) was specific for short-chain-length polyhydroxyalkanoates (PHA(SCL)) and hydrolysed both untreated native PHB granules as well as trypsin-activated native PHB granules to a mixture of mono- and dimeric 3-hydroxybutyrate. Crystalline (denatured) PHB granules were not hydrolysed by PhayZ3( Rru ). Low concentrations of calcium or magnesium ions (1-5 mM) reversibly (EDTA) inhibited the enzyme. Our data suggest that PhaZ3( Rru ) is the representative of a new type of the growing number of intracellular PHB depolymerases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app