JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice.

Aging Cell 2011 June
Trafficking through the secretory pathway is known to regulate the maturation of the APP-cleaving secretases and APP proteolysis. The coupling of stress signaling and pathological deterioration of the brain in Alzheimer's disease (AD) supports a mechanistic connection between endoplasmic reticulum (ER) stress and neurodegeneration. Consequently, small molecular chaperones, which promote protein folding and minimize ER stress, might be effective in delaying or attenuating the deleterious progression of AD. We tested this hypothesis by treating APPswePS1delta9 AD transgenic mice with the molecular chaperone phenylbutyric acid (PBA) for 14 months at a dose of 1 mg PBA g(-1) of body weight in the drinking water. Phenylbutyric acid treatment increased secretase-mediated APP cleavage, but was not associated with any increase in amyloid biosynthesis. The PBA-treated AD transgenic mice had significantly decreased incidence and size of amyloid plaques throughout the cortex and hippocampus. There was no change in total amyloid levels suggesting that PBA modifies amyloid aggregation or pathogenesis independently of biogenesis. The decrease in amyloid plaques was paralleled by increased memory retention, as PBA treatment facilitated cognitive performance in a spatial memory task in both wild-type and AD transgenic mice. The molecular mechanism underlying the cognitive facilitation of PBA is not clear; however, increased levels of both metabotropic and ionotropic glutamate receptors, as well as ADAM10 and TACE, were observed in the cortex and hippocampus of PBA-treated mice. The data suggest that PBA ameliorates the cognitive and pathological features of AD and supports the investigation of PBA as a therapeutic for AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app