JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of carbon black nanoparticles on elastase-induced emphysematous lung injury in mice.

Although adverse health effects of particulate matter with a diameter of <100 nm (nanoparticles) have been proposed, biological evidence supporting their promotion of the inflammatory lung response in vivo is limited. This study investigated the impact of pulmonary exposure to carbon black nanoparticles (CBNP) on emphysematous lung injury induced by porcine pancreatic elastase (PPE) in mice. Vehicle, two sizes (14 and 56 nm) of CBNP (50 μg/body: 4 mg/kg), PPE (0.03 U/body: 1 U/kg) or PPE + CBNP was administered intratracheally; thereafter, parameters of inflammatory lung changes were evaluated at several time-points. CBNP of 14 nm significantly induced acute lung inflammation in non-elicited subjects and aggravated PPE-elicited airway neutrophilic inflammation at an early stage (day 1), which was concomitant with the enhanced lung expression of pro-inflammatory cytokines such as interleukin-1β and chemokine such as keratinocyte-derived chemoattractant. Further, 14-nm CBNP exaggerated emphysematous lung structural changes at a delayed stage (day 14). On the other hand, 56-nm CBNP induced lung inflammation but did not influence PPE-elicited pathophysiology in the lung. Taken together, CBNP at an optimal size and dose can exacerbate PPE-induced pulmonary inflammation and emphysema. This enhancement may be mediated, at least partly, via the increased local expression of pro-inflammatory molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app