Add like
Add dislike
Add to saved papers

Activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) is needed for the TGFβ-induced chondrogenic and osteogenic differentiation of mesenchymal stem cells.

The role of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway on the osteogenesis of progenitor and stem cells has received a lot of attention due to conflicting results in the literature. ERK1/2 has been reported to be both activating and inhibitory to the osteogenesis of different cell types under varying culture conditions. This study focused specifically on the role of ERK1/2 on the chondrogenesis and osteogenesis of mesenchymal stem cells (MSC) induced by cytokine exposure. Bone marrow-derived MSC were cultured in three-dimensional fibrin gel scaffolds and stimulated down the chondrogenic and osteogenic programs by addition of TGF-β3 to and osteogenic buffer media. Cells were cultured under control conditions (no cytokine supplementation), treated with TGF-β3 or treated with PD98059+TGF-β3 for 7 days. RT-PCR results show that addition of TGF-β3 significantly upregulates the phosphorylation of ERK1/2 and induces the cells down the chondrogenic and osteogenic pathways (as demonstrated by the significant upregulation of aggrecan, sox9, collagen types 1 & 2 gene expressions). Inhibition of ERK1/2 phosphorylation with PD98059 led to the abolishment of the upregulation of chondrogenic and osteogenic-specific gene expressions. These results demonstrate that ERK1/2 is needed for the chondrogenic and osteogenic differentiation of MSC as induced by TGF-β3 supplementation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app