Add like
Add dislike
Add to saved papers

Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes.

Both Keggin-type phosphotungstic acid (HPW) and Pd are not prominent catalysts towards the oxygen reduction (ORR), but their composite Pd-HPW catalyst produces a significantly higher electrochemical activity for the ORR in acidic media. The novel composite catalyst was synthesized by self-assembly of HPW on multi-walled carbon nanotubes (MWCNTs) via the electrostatic attraction between negatively charged HPW and positively charged poly(diallyldimethylammonium (PDDA)-wrapped MWCNTs, followed by dispersion of Pd nanoparticles onto the HPW-PDDA-MWCNT assembly. The as-prepared catalyst was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). TEM images show that Pd nanoparticles were uniformly dispersed on the surface of MWCNTs even when the Pd loading was increased to 60 wt%. Electrochemical activity of the catalysts for the ORR was evaluated by steady state polarization measurements using a rotating disk electrode. Compared with the acid treated MWCNTs, Pd nanoparticles supported on the HPW-assembled MWCNTs show a much higher ORR activity that is comparable to conventional Pt/C catalysts. The high electrocatalytic activities could be related to high dispersion of Pd nanoparticles as well as synergistic effects originating from the high proton conductivity of HPW. The Pd/HPW-PDDA-MWCNTs system as the cathode catalyst in proton exchange membrane fuel cells is demonstrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app