JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes.

The stromal vascular fraction (SVF) of adipose tissue provides an abundant source of mesenchymal stem cells. For clinical application, it would be beneficial to establish treatments in which SVF is obtained, seeded onto a scaffold, and returned into the patient within a single surgical procedure. In this study, we evaluated the suitability of both a macroporous poly(L-lactide-co-caprolactone) and a porous collagen type I/III scaffold for this purpose. Surprisingly, cell attachment was rapid (∼10 min) and sequestered the majority of adipose stem cells, as deduced from colony-forming unit assays. Proliferation occurred in both polymeric scaffolds. Upon chondrogenic induction, up-regulation of chondrogenic genes, production of glycosaminoglycans, and accumulation of collagen type II was observed, indicating differentiation of scaffold-attached SVF cells along the chondrogenic lineage. Osteogenic differentiation was achieved in both scaffold types, as visualized by up-regulation of osteogenic genes, increase of alkaline phosphatase production over time, and accumulation of bone sialoprotein and osteonectin. In conclusion, this study identifies both poly(L-lactide-co-caprolactone) and collagen type I/III as promising scaffold materials for rapid attachment of adipose stem cell-like (stromal) cells, enhancing the development of one-step surgical concepts for cartilage and bone tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app