JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1.

The protein deacetylase SIRT1, and its activator resveratrol, exert beneficial effects on glucose metabolism. Different SIRT1 targets have been identified, including PTP1B, AMPK, FOXO, PGC-1α and IRS2. The latter may underscore a tight link between SIRT1 and insulin signaling components. However, whether SIRT1 has a direct effect on insulin resistance and whether resveratrol acts directly or indirectly in this context is still a matter of controversy and this question has not been addressed in muscle cells. Here, we show that SIRT1 protein expression is decreased in muscle biopsies and primary myotubes derived from type 2 diabetic patients, suggesting a contribution of diminished SIRT1 in the determination of muscle insulin resistance. To investigate the functional impact of SIRT1 on the insulin pathway, the activation of insulin downstream effector PKB was evaluated after SIRT1 inactivation by RNAi, SIRT1 overexpression, or resveratrol treatments. In muscle cells and HEK293 cells, downregulation of SIRT1 reduced, while overexpression increased, insulin-induced PKB activatory phosphorylation. Further molecular characterisation revealed that SIRT1 interacts in an insulin-independent manner with the PI3K adapter subunit p85. We then investigated whether resveratrol may improve insulin signaling in muscle cells via SIRT1, or alternative targets. Incubation of muscle cells with resveratrol reverted the insulin-resistant state induced by prolonged TNFα or insulin treatment. Resveratrol-dependent improvement of insulin-resistance occurred through inhibition of serine phosphorylation of IRS1/2, implicating resveratrol as a serine kinase inhibitor. Finally, a functional interaction between PI3K and SIRT1 was demonstrated in C. elegans, where constitutively active PI3K - mimicking increased IIS signaling - lead to shortened lifespan, while removal of sir-2.1 abolished PI3K-induced lifespan shortening. Our data identify SIRT1 as a positive modulator of insulin signaling in muscle cells through PI3K, and this mechanism appears to be conserved from C. elegans through humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app