JOURNAL ARTICLE

Human platelet lysate supports ex vivo expansion and enhances osteogenic differentiation of human bone marrow-derived mesenchymal stem cells

Wenjie Xia, Hui Li, Zhen Wang, Ru Xu, Yongshui Fu, Xiuming Zhang, Xin Ye, Yingfeng Huang, Andy Peng Xiang, Weihua Yu
Cell Biology International 2011, 35 (6): 639-43
21235529
MSCs (mesenchymal stem cells) with their versatile growth and differentiation potential are ideal candidates for use in regenerative medicine and are currently making their way into clinical trials, which requires the development of xeno-free protocols for their culture. In this study, MSCs were cultured in 10% FCS or 7.5% HPL (human platelet lysate)-supplemented media. We found that both groups of MSCs showed a comparable morphology, phenotype and proliferation. The percentage of cells in the S- and G2-/M-phases, however, was slightly up-regulated (P<0.01) in HPL group. HPL contains PDGF (platelet derived growth factor)-AB and IGF (insulin-like growth factor)-1. In addition, compared with FCS group, MSCs in HPL group showed an increase in osteogenic differentiation and a decrease in adipogenic differentiation. In conclusion, MSCs in HPL-supplemented media maintained similar growing potential and phenotype, while osteogenic potential was enhanced. HPL offers a promising alternative to FCS for MSC expansion for clinical application, especially in bone injury diseases.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21235529
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"