JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography.

Nano Letters 2011 Februrary 10
We apply colloidal lithography to construct stacked nanocrescent dimer structures with an exact vertical alignment and a separation distance of approximately 10 nm. Highly ordered, large arrays of these nanostructures are accessible using nonclose-packed colloidal monolayers as masks. Spatially separated nanocrescent dimers are obtained by application of spatially distributed colloids. The polarization dependent optical properties of the nanostructures are investigated in detail and compared to single crescents. The close proximity of the nanocrescents leads to a coupling process that gives rise to new optical resonances which can be described as linear superpositions of the individual crescents' plasmonic modes. We apply a plasmon hybridization model to explain the spectral differences of all polarization dependent resonances and use geometric arguments to explain the respective shifts of the resonances. Theoretical calculations are performed to support the hybridization model and extend it to higher order resonances not resolved experimentally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app