JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cerebral perfusion and aortic stiffness are independent predictors of white matter brain atrophy in type 1 diabetic patients assessed with magnetic resonance imaging.

Diabetes Care 2011 Februrary
OBJECTIVE: To identify vascular mechanisms of brain atrophy in type 1 diabetes mellitus (DM) patients by investigating the relationship between brain volumes and cerebral perfusion and aortic stiffness using magnetic resonance imaging (MRI).

RESEARCH DESIGN AND METHODS: Approval from the local institutional review board was obtained, and patients gave informed consent. Fifty-one type 1 DM patients (30 men; mean age 44 ± 11 years; mean DM duration 23 ± 12 years) and 34 age- and sex-matched healthy control subjects were prospectively enrolled. Exclusion criteria comprised hypertension, stroke, aortic disease, and standard MRI contraindications. White matter (WM) and gray matter (GM) brain volumes, total cerebral blood flow (tCBF), total brain perfusion, and aortic pulse wave velocity (PWV) were assessed using MRI. Multivariable linear regression analysis was used for statistics, with covariates age, sex, mean arterial pressure, BMI, smoking, heart rate, DM duration, and HbA(1c).

RESULTS: Both WM and GM brain volumes were decreased in type 1 DM patients compared with control subjects (WM P = 0.04; respective GM P = 0.03). Total brain perfusion was increased in type 1 DM compared with control subjects (β = -0.219, P < 0.05). Total CBF and aortic PWV predicted WM brain volume (β = 0.352, P = 0.024 for tCBF; respective β = -0.458, P = 0.016 for aortic PWV) in type 1 DM. Age was the independent predictor of GM brain volume (β = -0.695, P < 0.001).

CONCLUSIONS: Type 1 DM patients without hypertension showed WM and GM volume loss compared with control subjects concomitant with a relative increased brain perfusion. Total CBF and stiffness of the aorta independently predicted WM brain atrophy in type 1 DM. Only age predicted GM brain atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app