JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Energy scaling of 4.3 μm room temperature Fe:ZnSe laser.

Optics Letters 2011 January 2
We demonstrate a fourfold increase of the output energy of the gain-switched mid-IR Fe:ZnSe laser. Iron doping of the ZnSe polycrystalline samples was realized using a postgrowth thermal-diffusion method from the metal film. Gain-switched Er:Cr:YSGG (2.8 μm) laser pumped Fe:ZnSe lasing was studied in a Fabry-Perot cavity over a 236-300 K temperature range. The maximum output energy reached 4.7 mJ at 4.3 μm and 3.6 mJ at 4.37 μm at 236 K and 300 K and was limited only by available pump energy. The laser threshold was about 8 mJ and was practically unchanged over the studied temperature range. The laser slope efficiencies, measured with respect to the input pump energy, decreased from 19% to 16% with an increase of temperature from 236 to 300 K. The output radiation featured a Gaussian spatial profile with M(2) = 2.6.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app