Comparative Study
Journal Article
Multicenter Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Design of the Circulation Improving Resuscitation Care (CIRC) Trial: a new state of the art design for out-of-hospital cardiac arrest research.

Resuscitation 2011 March
PURPOSE: Mechanical chest compression devices, such as the AutoPulse(®), have been developed to overcome problems associated with manual CPR (M-CPR). Animal and human studies have shown that AutoPulse CPR improves hemodynamic parameters over M-CPR. However, human studies conducted in the prehospital setting have conflicting results as to the AutoPulse's efficacy in improving survival. The Circulation Improving Resuscitation Care (CIRC) Trial is designed to evaluate the effectiveness of integrated AutoPulse-CPR (iA-CPR) (i.e., M-CPR followed by AutoPulse(®)-CPR) in a randomized controlled trial that addresses methodological issues that may have influenced the results of previous studies.

METHODS: This paper describes the methodology of the CIRC trial.

RESULTS: Unlike previous trials the CIRC trial studies iA-CPR where emphasis is placed on reducing "hands-off" time. The trial has six unique features: (1) training of all EMS providers in a standardized deployment strategy that reduces hands-off time and continuous monitoring for protocol compliance. (2) A pre-trial simulation study of provider compliance with the trial protocol. (3) Three distinct study phases (in-field training, run-in, and statistical inclusion) to minimize the Hawthorne effect and other biases. (4) Monitoring of the CPR process using either transthoracic impedance or accelerometer data. (5) Randomization at the subject level after the decision to resuscitate is made to reduce selection bias. (6) Use of the Group Sequential Double Triangular Test with sufficient power to determine superiority, inferiority, or equivalence.

CONCLUSION: This unique, large, multicenter study comparing the effectiveness of iA-CPR to M-CPR will contribute to the science of the treatment of out-of-hospital cardiac arrest as well as to the design of future trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app