Add like
Add dislike
Add to saved papers

Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model.

Brain insulin receptors (IRs) have been suggested as an important regulatory factor for cognitive functions but the involvement of IR signaling in memory deficit associated with neurodegenerative conditions is not yet explored. In the present study, IR gene expression was studied by RT-PCR and signaling pathways by immunoblotting in CA1, DG and CA3 subregions of hippocampus in intracerebroventricular (ICV) administered streptozotocin (STZ, 3mg/kg twice) induced memory deficit model in rat. The effect of pre- and post-treatment of donepezil (5mg/kg po) and melatonin (20mg/kg po) on signaling pathways were studied. Effect of LY294002 (ICV), a PI3 Kinase inhibitor, was also investigated on memory functions and Akt phosphorylation. An increased IR expression (both gene and protein), phosphorylation of Shc, Erk1/2, IRS-1 and Akt in CA1 and CA3 region of P2M fraction was observed after training as compared to control. STZ treated rats showed memory deficit and significant decrease in IR expression, phosphorylation of IRS-1 and Akt only in CA3 region as compared to trained group which were reversed by pre and post-treatment of melatonin but donepezil was effective only against memory deficit. LY294002 (3mM) treatment showed delayed learning and decrease in Akt phosphorylation. This study suggests that IR expression and its signaling pathways in hippocampal CA1 and CA3 regions are involved in memory functions and STZ (ICV) induced memory deficit. Hippocampal IR system might be playing an important role in regulation of memory functions, however only IR/IRS-1/Akt pathway in CA3 region is associated with STZ induced memory deficit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app