JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pro-apoptotic and anti-proliferative effects of mitofusin-2 via Bax signaling in hepatocellular carcinoma cells.

Medical Oncology 2012 March
Mitochondrial GTPase mitofusin-2 (Mfn2) is a novel gene that remarkably suppresses the injury-mediated proliferation of vascular smooth muscle cells (VSMCs) and has a potential apoptotic effect via the mitochondrial apoptotic pathway. Hepatocellular carcinoma (HCC) tissues and matched normal tissues were examined for mfn2 expression. HCC cells were infected with adenovirus carrying Mfn2 (Ad-mfn2) or green fluorescent protein (Ad-GFP), used as a control. Short hairpin RNA (shRNA) was formed by shR-mfn2 and shR-Bax to repress mfn2 and Bax transcription, respectively. The effects of mfn2 on cell cycle distribution and apoptosis were measured by flow cytometric analysis. Significant downregulation of mfn2 was observed in HCC tissues compared with nearby normal tissues. Overexpression of mfn2 inhibited HCC cell proliferation and induced apoptosis by increasing the level of active caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage. Overexpression of mfn2 also induced cytochrome c release to the cytoplasm by enhancing Bax translocation from the cytoplasm to the mitochondrial membrane. Upregulation of mfn2 promoted apoptosis of HCC cells, and this was dramatically suppressed by shR-Bax. Our results show that the mfn2 gene is a potential tumor suppressor target that may significantly promote apoptosis via Bax and may inhibit proliferation in HCC cells. This gene may be an important therapeutic target for the treatment of tumors or hyperproliferative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app