JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element.

Soy protein and isoflavones (genistein and daidzein) have been demonstrated to increase quinone reductase (QR) activity, protein, and mRNA in animal and cell culture models. However, their mechanism of action has not been completely characterized. Additionally, it has not been determined if equol, a daidzein metabolite, can modulate QR activity and expression. Estrogen receptor beta (ERβ) is thought to be involved in stimulating QR gene transcription by anti-estrogens and phytoestrogens, along with nuclear factor erythroid 2-related factor 2 (Nrf2). This study tested the hypothesis that genistein, daidzein and equol increase quinone reductase activity, protein and mRNA via ERβ and Nrf2 binding to the QR antioxidant response element (ARE). QR expression and activity were determined using TaqMan polymerase chain reaction, protein immunoblots and activity assays. Molecular events were investigated using luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). Hepa-1c1c7 cells were treated with control [0.1% (v:v) dimethyl sulfoxide (DMSO)]; 1 μmol/L β-naphthoflavone (positive control); 5 μmol/L resveratrol (ChIP positive control for ERβ binding) and 1, 5 and 25 μmol/L genistein, daidzein or equol. Treatment durations were 1 h (ChIP), 24 h (mRNA and luciferase assays) and 24 and 48 h (protein and activity). Genistein, daidzein and equol increased QR activity, protein and mRNA, with daidzein and equol having more of an impact at physiologic concentrations (1 and 5 μmol/L) compared to genistein. Furthermore, the study results demonstrate that genistein, daidzein and equol interact with the QR ARE and that daidzein and equol act via both ERβ and Nrf2 binding strongly to the QR ARE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app