Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent mechanism, contributes to anti-atherogenesis and vascular protective effects of Ginkgo biloba extract.

Atherosclerosis 2011 Februrary
AIMS: Vascular protective effects of Ginkgo biloba extract (GBE) may involve both antioxidant-related and anti-inflammatory mechanisms. GBE was recently suggested as a heme oxygenase (HO)-1 inducer. The role of HO-1 in anti-atherogenesis and related vascular protective effects of GBE awaited further clarification.

METHODS AND RESULTS: Tumor necrosis factor (TNF)-α was used to stimulate adhesiveness of human aortic endothelial cells (HAECs) to monocytes, an in vitro sign simulating atherogenesis. Pretreatment with GBE reduced TNF-α-stimulated endothelial adhesiveness, which could be attenuated by HO-1 inhibitors ZnPP IX or SnPP IX. GBE increased HO-1 expression and enzyme activity in HAECs. Pretreatment with MAP kinase inhibitor SB203580 significantly reduced GBE-induced HO-1 expression. Furthermore, GBE activated the translocation of the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2), and increased its binding to the antioxidant response element (ARE) of the HO-1 gene. Pretreatment with PEG-SOD or other antioxidant reagents did not alter GBE-induced endothelial HO-1 expression. In vivo study also showed that GBE treatment could reduce leukocyte adherence to injury arteries, and enhance HO-1 expression in circulating monocytes and in arteries after wire injury, suggesting the in vivo induction of HO-1 by GBE.

CONCLUSION: GBE could inhibit cytokine-induced endothelial adhesiveness by inducing HO-1 expression via the activation of p38 and Nrf-2 pathways, a mechanism in which oxidative stress is not directly involved. GBE might exert its anti-atherogenesis and vascular protective effects by inducing vascular HO-1 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app