JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Molecular virology in the clinical laboratory.

As one can see by the tests listed at www.amp.org, molecular diagnostic techniques have enabled the laboratory professionals to play an integral role in the identification and quantitation of viral infectious agents. Viral loads can be determined for HIV, HBV, and HCV using a variety of molecular methods such as real-time PCR, TMA, NASBA, and bDNA. Determining the amount of viral particles in a sample can not only monitor the status and progression of the disease, but can also guide recommendations for antiviral therapy. Other assays listed include cytomegalovirus, enterovirus, and human metapneumovirus detection, HPV testing, influenza and respiratory virus panels, and West Nile virus detection in blood donations using a variety of molecular methodologies. The use of molecular methodologies in the detection of viral pathogens has grown at an astounding rate, especially in the past two decades. It is now widely accepted that PCR is the "gold standard" for nucleic acid detection in the clinical laboratory as well as in research facilities. This article only touched on some of the common, widely used assays and platforms used in the identification process. With more and more assays being developed, the cost behind molecular testing has decreased since there are more competitors on the market. At one point, laboratorians may have thought of routine molecular testing as the wave of the future. It is obvious the future is upon us. Molecular diagnostics has become part of the daily, routine workload in most clinical laboratories. The advent of fully automated systems with faster turn around times has given laboratory professionals the tools necessary to report out accurate and sensitive results to clinicians who can ultimately improve patient care and outcomes by rendering a correct and rapid diagnosis.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app