Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis.

2,3,5-Tris(glutathion-S-yl)-hydroquinone (TGHQ), a metabolite of hydroquinone, is toxic to renal proximal tubule epithelial cells. TGHQ retains the ability to redox cycle and create an oxidative stress. To assist in elucidating the contribution of reactive oxygen species (ROS) to TGHQ-induced toxicity, we determined whether the antioxidant, N-acetyl-L-cysteine (NAC), could protect human kidney proximal tubule epithelial cells (HK-2 cell line) against TGHQ-induced toxicity. NAC provided remarkable protection against TGHQ-induced toxicity to HK-2 cells. NAC almost completely inhibited TGHQ-induced cell death, mitochondrial membrane potential collapse, as well as ROS production. NAC also attenuated TGHQ-induced DNA damage and the subsequent activation of poly (ADP-ribose) polymerase and ATP depletion. Moreover, NAC significantly attenuated c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase phosphorylation induced by TGHQ. In contrast, NAC itself markedly increased extracellular regulated kinase1/2 (ERK1/2) activation, and the upstream mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor, PD-98059, only partially inhibited this activation, suggesting that NAC can directly activate ERK1/2 activity. However, although NAC is frequently utilized as a glutathione (GSH) precursor, the cytoprotection afforded by NAC in HK-2 cells was not a consequence of increased GSH levels. We speculate that NAC exerts its protective effect in part by directly scavenging ROS and in part via ERK1/2 activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app