Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes

L Pons, M-L Délia, A Bergel
Bioresource Technology 2011, 102 (3): 2678-83
Biofilms of Geobacter sulfurreducens were formed under chronoamperometry at -0.5 V and -0.6 V vs. Ag/AgCl on stainless steel cathodes and tested for fumarate reduction. Increasing the surface roughness Ra from 2.0 μm to 4.0 μm increased currents by a factor of 1.6. The overall current density increased with biofilm coverage. When the current density was calculated with respect to the biofilm-coated area only, values up to 280 A/m(2) were derived. These values decreased with biofilm coverage and indicated that isolated cells or small colonies locally provide higher current density than dense colonies. Steel composition affected the current values because of differences in biofilm structure and electron transfer rates. Biofilms formed under polarisation revealed better electrochemical characteristics than biofilm developed at open circuit. This work opens up new guidelines for the design of microbial cathodes: a uniform carpet of isolated bacteria or small colonies should be targeted, avoiding the formation of large colonies.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"