Add like
Add dislike
Add to saved papers

In vivo hyperoxic preconditioning protects against rat-heart ischemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release.

In vivo hyperoxic preconditioning (PC) has been shown to protect against ischemia/reperfusion (I/R) myocardial damage. Mitochondrial permeability transition pore (MPTP) opening is an important event in cardiomyocyte cell death occurring during I/R and therefore a possible target for cardioprotection. We tested the hypothesis that in vivo hyperoxic PC, obtained by mechanical ventilation of animals, could protect heart against I/R injury by inhibiting MPTP opening and cytochrome c release from mitochondria. Mechanically ventilated rats were first exposed to a short period of hyperoxia and isolated hearts were subsequently subjected to I/R in a Langendorff apparatus. Hyperoxic PC significantly improved the functional recovery of hearts on reperfusion, reduced the infarct size, and decreased necrotic damage as shown by the reduced release of lactate dehydrogenase. Mitochondria from hyperoxic PC hearts were less sensitive than mitochondria from reperfused heart to MPTP opening. In addition, hyperoxic PC prevented mitochondrial NAD(+) depletion, an indicator of MPTP opening, and cytochrome c release as well as cardiolipin oxidation/depletion associated with I/R. Together, these results demonstrate that hyperoxic PC protects against heart I/R injury by inhibiting MPTP opening and cytochrome c release. Thus, in vivo hyperoxic PC may represent a useful strategy for the treatment of cardiac I/R injury and could have potential applications in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app