JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application.

We have prepared a series of TiO2 nanoparticles for antibacterial applications. These TiO2 nanoparticles were prepared by the hydrolysis precipitation method with Ti(OBu)4, silver nitrate and ammonia. Crystal structure, particle size, interfacial structure and UV-visible light response of the prepared nanoparticles were characterized by X-ray diffraction measurements (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRs). The XRD spectra showed that all samples were anatase structure calcined at 450 degrees C for 3 hours. The Ag doping made the peak of diffraction wider. The results of TEM showed that the nanoparticles of TiO2, N-TiO2 and 1% Ag-N-TiO2 were all spherical in shape and well distributed with a mean size of 19.8 nm, 39.2 nm and 20.7 nm, respectively. N doping caused the nanoparticle size to increase, while, when the doped amount of Ag+ increased, the TiO2 particle size decreased. The FTIR revealed that Ag and N doping of TiO2 appeared to have strong absorption by -OH group and showed the characteristic absorption band of NH4+ and Ag. The UV-Vis-DRs indicated that the absorption band of Ag-N co-doped TiO2 had red shift and that the optical absorption response (between 400 nm and 700 nm) had obvious enhancement. The antibacterial properties of nanoparticles were investigated by agar diffusion method toward Escherichia coli and Bacillus subtilis. The results indicated that both Ag- and N-doped TiO2 could increase the antibacterial properties of TiO2 nanoparticles under fluorescent light irradiation. A 1% Ag-N-TiO2 had the highest antibacterial activity with a clear antibacterial circle of 33.0 mm toward Escherichia coli and 22.8 mm toward Bacillus subtilis after cultivation for 24 hours.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app