JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of ambient temperature on caffeine ergogenicity during endurance exercise.

It is well established that caffeine ingestion during exercise enhances endurance performance. Conversely, the physiological and psychological strain that accompanies increased ambient temperature decreases endurance performance. Little is known about the interaction between environmental temperature and the effects of caffeine on performance. The purpose of this study was to compare the effects of ambient temperature (12 and 33°C) on caffeine ergogenicity during endurance cycling exercise. Eleven male cyclists (mean ± SD; age, 25 ± 6 years; [Formula: see text] 58.7 ± 2.9 ml kg(-1) min(-1)) completed four exercise trials in a randomized, double blind experimental design. After cycling continuously for 90 min (average 65 ± 7% [Formula: see text]) in either a warm (33 ± 1°C, 41 ± 5%rh) or cool (12 ± 1°C, 60 ± 7%rh) environment, subjects completed a 15-min performance trial (PT; based on total work accumulated). Subjects ingested 3 mg kg(-1) of encapsulated caffeine (CAF) or placebo (PLA) 60 min prior to and after 45 min of exercise. Throughout exercise, subjects ingested water so that at the end of exercise, independent of ambient temperature, their body mass was reduced 0.55 ± 0.67%. Two-way (temperature × treatment) repeated-measures ANOVA were conducted with alpha set at 0.05. Total work (kJ) during the PT was greater in 12°C than 33°C [P < 0.001, η(2) = 0.804, confidence interval (CI): 30.51-62.30]. When pooled, CAF increased performance versus PLA independent of temperature (P = 0.006, η(2) = 0.542 CI: 3.60-16.86). However, performance differences with CAF were not dependent on ambient temperature (i.e., non-significant interaction; P = 0.662). CAF versus PLA in 12 and 33°C resulted in few differences in other physiological variables. However, during exercise, rectal temperature (T (re)) increased in the warm environment (peak T (re); 33°C, 39.40 ± 0.45; 12°C, 38.79 ± 0.42°C; P < 0.05) but was not different in CAF versus PLA (P > 0.05). Increased ambient temperature had a detrimental effect on cycling performance in both the CAF and PLA conditions. CAF improved performance independent of environmental temperature. These findings suggest that caffeine at the dosage utilized (6 mg/kg body mass) is a, legal drug that provides an ergogenic benefit in 12 and 33°C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app