Add like
Add dislike
Add to saved papers

Inhibitory effects of miRNA-200c on chemotherapy-resistance and cell proliferation of gastric cancer SGC7901/DDP cells.

BACKGROUND AND OBJECTIVE: miRNA-200c can not only inhibit the aggressiveness of cancer cells but also increase the sensitivity of cells to antitumor drugs. However, some mechanisms are still unclear. Recent researches revealed that E-cadherin is more than an inhibitor of metastasis, and it also plays important roles in reversing drug resistance. We had previously found that miRNA-200c could not only induce the expression of E-cadherin but also increase the sensitivity of gastric cancer SGC7901/DDP cells to cisplatin (DDP). This study aimed to explore the effects of miRNA-200c on biological characteristics of SGC7901/DDP cells and the roles of E-cadherin in the regulatory pathway of miRNA-200c.

METHODS: SGC7901/DDP cells and its parental cell line SGC7901 cells were transfected with miRNA-200c precursor (Pre-200c) and E-cadherin siRNA, respectively. Real-time RT-PCR was used to detect miRNA-200c expression after transfection with Pre-200c in SGC7901/DDP cell line. Drug sensitivities to DDP, 5-fluorouracil (5-FU), paclitaxel, and adriamycin (ADR) after transfection were tested using MTT assay. The proliferation of SGC7901/DDP cells was also detected after transfection. The protein changes of E-cadherin, Bax, and Bcl-2 after transfection were detected by Western blot.

RESULTS: The miRNA-200c expression in SGC7901/DDP cells after transfection of Pre-200c was 7.128 ± 0.159 times of that in negative control (P < 0.05). The IC50 of DDP, 5-FU, paclitaxel, and ADR in Pre-200c-transfected group were significantly lower than that in negative control group (P < 0.05). Compared to the control group, cell proliferation was significantly decreased (P < 0.05). The relative protein expressions of E-cadherin and Bax in Pre-200c-transfected group were significantly higher than those in negative control group (P < 0.05), whereas Bcl-2 was significantly lower than that in control (P < 0.05). Additionally, E-cadherin protein expression was significantly inhibited after transfected with E-cadherin siRNA in SGC7901 cells. The Bax protein expression was significantly down-regulated by E-cadherin siRNA (P < 0.05), whereas the Bcl-2 expression was significantly up-regulated (P < 0.05).

CONCLUSION: miRNA-200c can indirectly regulate apoptosis through E-cadherin in SGC7901/DDP cells, which may be a possible mechanism of miRNA-200c in reversing drug resistance and inhibiting proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app