JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Attenuation of proinflammatory cytokines and apoptotic process by verapamil and diltiazem against quinolinic acid induced Huntington like alterations in rats.

Brain Research 2011 Februrary 5
Huntington disease is a neurodegenerative disease with complex pathophysiology. Recently, role of neuroinflammation and interplay between various other cellular cascades have been suggested to be involved in pathophysiology of Huntington disease. Involvement of calcium overload mediated oxidative damage and excitotoxicity have been suggested to play a central role in quinolinic acid induced Huntington like symptoms. The present study has been carried out to investigate the neuroprotective effect of calcium channel blockers (verapamil and diltiazem) against quinolinic acid induced dysfunction in motor, biochemical and neuroinflammatory signaling in rats. Intrastriatal quinolinic acid administration leads to significant motor [locomotor (72% reduction), rotarod (55% reduction), balance beam walk performance] dysfunction coupled with the marked oxidative damage and increased neuroinflammatory markers [TNF-α (140%), IL-6 (115%), caspase-3(75%)] levels in striatum as compared to the sham treatment. Verapamil (10 and 20mg/kg), diltiazem (10 and 20mg/kg) drug treatment for 21days resulted in a significant improvement in the motor function (improvement in locomotor activity, rotarod and balance beam walk performance). Further, verapamil (10 and 20mg/kg), diltiazem (10 and 20mg/kg) treatment significantly attenuated oxidative damage, level of proinflammatory mediators (TNF-α IL-6 and caspase-3) in quinolinic acid treated animals. Results of the present study demonstrate that protective effect of these calcium channel blockers (verapamil, diltiazem) might be due to their inhibitory action on different neuroinflammatory pathways against quinolinic acid induced Huntington disease like symptoms in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app