JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Shape variability of potentials recorded by a single-fiber electrode and its effect on jitter estimation.

Technical problems accompanying the recording of fiber pair potentials introduce certain instability in the peak-to-peak interval (rise-time, RT) of these potentials. This study aims (1) to measure the variability observed in RT of a large number of sets of consecutive potentials recorded by a single-fiber (SF) electrode and (2) to evaluate the effect of such variability on the jitter estimation. Using a SF electrode, 140 sets of consecutive potentials were recorded from the m. tibialis anterior of four healthy subjects. For each set, the rise-time variability (RTV) was calculated as the standard deviation of the RTs of the discharges within that set. The effect of RTV in the estimation of jitter from simulated fiber pairs with controlled values of neuromuscular jitter was analyzed. The RTVs of sets visually assessed as produced by a "single-fiber" were always less than 20 μs, whereas those of "composite" sets were normally higher than 20 μs. We found that the RTV always increased the estimated jitter of fiber pairs. Such increment depended on the amount of neuromuscular jitter. The RTV provides an estimate of the possible error introduced in jitter assessment. This could be important for the diagnosis of mild clinical manifestations of myasthenia gravis, myopathies, and Duchenne dystrophies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app