JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

p38 maintains E-cadherin expression by modulating TAK1-NF-kappa B during epithelial-to-mesenchymal transition.

Journal of Cell Science 2010 December 16
Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells is a pathological process that occurs during peritoneal dialysis. EMT leads to peritoneal fibrosis, ultrafiltration failure and eventually to the discontinuation of therapy. Signaling pathways involved in mesothelial EMT are thus of great interest, but are mostly unknown. We used primary mesothelial cells from human omentum to analyze the role of the p38 MAPK signaling pathway in the induction of EMT. The use of specific inhibitors, a dominant-negative p38 mutant and lentiviral silencing of p38α demonstrated that p38 promotes E-cadherin expression both in untreated cells and in cells co-stimulated with the EMT-inducing stimuli transforming growth factor (TGF)-β1 and interleukin (IL)-1β. p38 inhibition also led to disorganization and downregulation of cytokeratin filaments and zonula occludens (ZO)-1, whereas expression of vimentin was increased. Analysis of transcription factors that repress E-cadherin expression showed that p38 blockade inhibited expression of Snail1 while increasing expression of Twist. Nuclear translocation and transcriptional activity of p65 NF-κB, an important inducer of EMT, was increased by p38 inhibition. Moreover, p38 inhibition increased the phosphorylation of TGF-β-activated kinase 1 (TAK1), NF-κB and IκBα. The effect of p38 inhibition on E-cadherin expression was rescued by modulating the TAK1-NF-κB pathway. Our results demonstrate that p38 maintains E-cadherin expression by suppressing TAK1-NF-κB signaling, thus impeding the induction of EMT in human primary mesothelial cells. This represents a novel role of p38 as a brake or 'gatekeeper' of EMT induction by maintaining E-cadherin levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app