JOURNAL ARTICLE

On the feasibility of learning to predict minimum toe clearance under different walking speeds

Daniel T H Lai, A Shilton, R Begg
Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2010, 2010: 4890-3
21096655
A major concern in human movement research is preventing tripping and falling which is known to cause severe injuries and high fatalities in elderly (>65 years) populations. Current falls prevention technology consists of active interventions e.g., strength and balance exercises, preimpact fall detectors, and passive interventions e.g., shower rails, hip protectors. However it has been found that these interventions with the exception of balance exercises do not effectively reduce falls risk. Recent work has shown that the minimum toe clearance (MTC) can be successfully monitored to detect gait patterns indicative of tripping and falling risk. In this paper, we investigate the feasibility of predicting MTC values of consecutive gait cycles under different walking speeds. The objective is two-fold, first to determine if end point foot trajectories can be accurately predicted and second, if walking speed is a significant parameter which influences the prediction process. The Generalized Regression Neural Networks and the Support Vector Regressor models were trained to predict MTC time series successively over an increasing prediction horizon i.e., 1 to 10 steps. Increased walking speeds resulted in increased MTC variability but no significant increase in mean MTC height. Root mean squared prediction errors ranged between 2.2-2.6mm or 10% of the mean values of the respective test data. The SVM slightly outperformed the GRNN predictions (0.5%-2.1% better accuracy). Best prediction accuracies decreased by 0.5mm for a doubling of walking speed i.e., from 2.5 km/h to 5.5 km/h. The results are encouraging because they demonstrate that the technique could be applied to forecasting low MTC values and provide new approaches to falls prevention technologies.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21096655
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"