JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Suppression of hypoxia-inducible factor 1α (HIF-1α) by tirapazamine is dependent on eIF2α phosphorylation rather than the mTORC1/4E-BP1 pathway.

Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Tirapazamine (TPZ), a well-characterized bioreductive anticancer agent, is currently in Phase II and III clinical trials. A major aspect of the anticancer activity of TPZ is its identity as a tumor-specific topoisomerase IIα inhibitor. In the study, for the first time, we found that TPZ acts in a novel manner to inhibit HIF-1α accumulation driven by hypoxia or growth factors in human cancer cells and in HepG2 cell-derived tumors in athymic nude mice. We investigated the mechanism of TPZ on HIF-1α in HeLa human cervical cancer cells by western blot analysis, reverse transcription-PCR assay, luciferase reporter assay and small interfering RNA (siRNA) assay. Mechanistic studies demonstrated that neither HIF-1α mRNA levels nor HIF-1α protein degradation are affected by TPZ. However, TPZ was found to be involved in HIF-1α translational regulation. Further studies revealed that the inhibitory effect of TPZ on HIF-1α protein synthesis is dependent on the phosphorylation of translation initiation factor 2α (eIF2α) rather than the mTOR complex 1/eukaryotic initiation factor 4E-binding protein-1 (mTORC1/4E-BP1) pathway. Immunofluorescence analysis of tumor sections provide the in vivo evidences to support our hypothesis. Additionally, siRNA specifically targeting topoisomerase IIα did not reverse the ability of TPZ to inhibit HIF-1α expression, suggesting that the HIF-1α inhibitory activity of TPZ is independent of its topoisomerase IIα inhibition. In conclusion, our findings suggest that TPZ is a potent regulator of HIF-1α and provide new insight into the potential molecular mechanism whereby TPZ serves to reduce HIF-1α expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app