Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells

Quanri Jin, Linda X Yuan, Delphine Boulbes, Jong Min Baek, Ying Nai Wang, Daniel Gomez-Cabello, David H Hawke, Sai Ching Yeung, Mong Hong Lee, Gabriel N Hortobagyi, Mien Chie Hung, Francisco J Esteva
Breast Cancer Research: BCR 2010, 12 (6): R96

INTRODUCTION: The human epidermal growth factor receptor 2 (HER2) is a validated therapeutic target in breast cancer. Heterodimerization of HER2 with other HER family members results in enhanced tyrosine phosphorylation and activation of signal transduction pathways. HER2 overexpression increases the translation of fatty acid synthase (FASN), and FASN overexpression markedly increases HER2 signaling, which results in enhanced cell growth. However, the molecular mechanism and regulation of HER2 and FASN interaction are not well defined. Lapatinib is a small-molecule tyrosine kinase inhibitor that blocks phosphorylation of the epidermal growth factor receptor and HER2 in breast cancer cells, resulting in apoptosis. We hypothesized that FASN is directly phosphorylated by HER2, resulting in enhanced signaling and tumor progression in breast cancer cells.

METHODS: Using mass spectrometry, we identified FASN as one of the proteins that is dephosphorylated by lapatinib in SKBR3 breast cancer cells. Immunofluorescence, immunoprecipitation, Western blotting, a kinase assay, a FASN enzymatic activity assay, an invasion assay, a cell viability assay and zymography were used to determine the role of FASN phosphorylation in invasion of SKBR3 and BT474 cells. The FASN inhibitor C75 and small interfering RNA were used to downregulate FASN expression and/or activity.

RESULTS: Our data demonstrated that FASN is phosphorylated when it is in complex with HER2. FASN phosphorylation was induced by heregulin in HER2-overexpressing SKBR3 and BT474 breast cancer cells. Heregulin-induced FASN phosphorylation resulted in increased FASN enzymatic activity, which was inhibited by lapatinib. The FASN inhibitor C75 suppressed FASN activity by directly inhibiting HER2 and FASN phosphorylation. Blocking FASN phosphorylation and activity by lapatinib or C75 suppressed the activity of matrix metallopeptidase 9 and inhibited invasion of SKBR3 and BT474 cells.

CONCLUSIONS: FASN phosphorylation by HER2 plays an important role in breast cancer progression and may be a novel therapeutic target in HER2-overexpressing breast cancer cells.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"