Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acute treatment with cannabinoid receptor agonist WIN55212.2 improves prepulse inhibition in psychosocially stressed mice.

Cannabis, similar to psychosocial stress, is well known to exacerbate psychotic experiences and can precipitate psychotic episodes in vulnerable individuals. Cannabinoid receptors 1 (CB1) are widely expressed in the brain and are particularly important to mediate the effects of cannabis. Chronic cannabis use in patients and chronic cannabinoids treatment in animals is known to cause reduced prepulse inhibition (PPI). Similarly, chronic psychosocial stress in mice impairs PPI. In the present study, we investigated the synergistic effects of substances modulating the CB1-receptors and chronic psychosocial stress on PPI. For this purpose, adult C57Bl/6J mice were exposed to chronic psychosocial stress using the resident-intruder paradigm. The cannabinoid receptor agonist WIN55212.2 served as a surrogate marker for the effects of cannabis in the brain. After exposure to stress mice were acutely injected with WIN55212.2 (3 mg/kg) with or without pre-treatment with Rimonabant (3 mg/kg), a specific CB1-receptor antagonist, and subjected to behavioral testing. Stressed mice displayed a higher vulnerability to WIN55212.2 in the PPI test than control animals. The effects of WIN55212.2 on PPI were antagonized by Rimonabant suggesting an involvement of CB1-receptors in sensorimotor gating. Interestingly, WIN55212.2 increased PPI in psychosocially stressed mice although previous studies in rats showed the opposite effects. It may thus be possible, that depending on the doses of cannabinoids/CB1-receptor agonists applied and environmental conditions (psychosocial stress), opposite effects can be evoked in different experimental animals. Taken together, our data imply that CB1-receptors might play a crucial role in the synergistic effects of psychosocial stress and cannabinoids in brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app