The genetic control of tolerance to aluminum toxicity in the 'Essex' by 'Forrest' recombinant inbred line population

Aman D Sharma, Hemlata Sharma, David A Lightfoot
TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 2011, 122 (4): 687-94
Aluminum (Al) toxicity to plant roots is a major problem of acidic soils. The main chemical reaction involved is Al hydrolysis. Application of lime or nitrate fertilizers to raise soil pH reduces Al toxicity but not as economically as a plant genotypes with natural tolerance against this stress. Ammonium fertilization of crops and assimilation of ammonium (even that derived from dinitrogen) are particularly acidifying of the root zone. The aims of the present study were to find genotypes of soybean tolerant to aluminum stress and identify QTL underlying that trait. Used were recombinant inbred lines (RILs) derived from the cross of 'Essex' by 'Forrest'. RILs were grown in a greenhouse for 3 weeks and then transferred to hydroponics in a growth chamber. Root lengths (RL) were measured before and 72 h after Al treatment. RL before and after Al treatment were measured and used to calculate root tolerance index (RTI) and relative mean growth (RMG). RILs 1, 85, 40 and 83 had significant (P<0.005) tolerance to Al stress judged by RL after Al, RTI and RMG. Eleven minor but significant marker-trait associations (P<0.05) were detected using one-way ANOVA but only two major loci were significant in composite interval maps (LOD>3.0). The QTL on linkage group F (chromosome 13) was in the interval Satt160-Satt252 with a peak at 24 cM (peak LOD was 3.3). The QTL underlay 31% of trait variation and the Essex allele provided an additional 1.61 cm of root growth over 72 h in the presence of Al. The QTL on linkage group C2 (probably chromosome 4) was in the interval from Satt202 to Satt371 with a peak at 3.2 cM (peak LOD was 14.7). The QTL underlay 34% of trait variation or 1.81 cm of growth over 72 h in the presence of Al. Both loci encompassed genes implicated in citrate metabolism, a method of aluminum detoxification known to vary among soybean cultivars. Two major loci and at least nine minor loci were inferred to underlie tolerance to Al. RILs and markers may be used to select alleles that increase tolerance to soybean against Al stress.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"