Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional impact of white matter hyperintensities in cognitively normal elderly subjects.

Archives of Neurology 2010 November
OBJECTIVE: To investigate the impact white matter hyperintensities (WMH) detected on magnetic resonance imaging have on motor dysfunction and cognitive impairment in elderly subjects without dementia.

DESIGN: Cross-sectional study.

SETTING: Population-based study on the incidence and prevalence of cognitive impairment in Olmsted County, Minnesota.

PARTICIPANTS: A total of 148 elderly subjects (65 men) without dementia ranging in age from 73 to 91 years.

MAIN OUTCOME MEASURES: We measured the percentage of the total white matter volume classified as WMH in a priori-defined brain regions (ie, frontal, temporal, parietal, occipital, periventricular, or subcortical). Motor impairment was evaluated qualitatively using the Unified Parkinson's Disease Rating Scale summary measures of motor skills and quantitatively using a digitized portable walkway system. Four cognitive domains were evaluated using z scores of memory, language, executive function, and visuospatial reasoning.

RESULTS: A higher WMH proportion in all regions except the occipital lobe was associated with lower executive function z score (P value <.01). A higher WMH proportion in all regions, but most strongly for the parietal lobe, correlated with higher Unified Parkinson's Disease Rating Scale gait, posture, and postural stability sum (P value <.01). A higher WMH proportion, whether periventricular, subcortical, or lobar, correlated with reduced velocity (P value <.001).

CONCLUSIONS: We conclude that executive function is the primary cognitive domain affected by WMH burden. The data suggest that WMH in the parietal lobe are chiefly responsible for reduced balance and postural support compared with the other 3 lobes and may alter integration of sensory information via parietal lobe dysfunction in the aging brain. Parietal white matter changes were not the predominant correlate with motor speed, lending evidence to a global involvement of neural networks in gait velocity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app